Geometric Sequences and Sums

Sequence

A Sequence is a set of things (usually numbers) that are in order.

Geometric Sequences

In a Geometric Sequence each term is found by multiplying the previous term by a constant.

Example:

$$2, 4, 8, 16, 32, 64, 128, 256, ...$$

This sequence has a factor of 2 between each number.

Each term (except the first term) is found by multiplying the previous term by 2.

In General you could write a Geometric Sequence like this:

$$\{a, ar, ar^2, ar^3, ...\}$$

where:

- a is the first term, and
- r is the factor between the terms (called the "common ratio")

Example: $\{1, 2, 4, 8, ...\}$
The sequence starts at 1 and doubles each time, so
- \(a=1 \) (the first term)
- \(r=2 \) (the "common ratio" between terms is a doubling)

So we would get:

\[
\{a, ar, ar^2, ar^3, \ldots \} = \{1, 1\times2, 1\times2^2, 1\times2^3, \ldots \} = \{1, 2, 4, 8, \ldots \}
\]

But be careful, \(r \) should not be 0:
- When \(r=0 \), you get the sequence \(\{a,0,0,\ldots\} \) which is not geometric

The Rule

You can also calculate **any term** using the Rule:

\[
x_n = ar^{n-1}
\]

(We use "n-1" because \(ar^0 \) is for the 1st term)

Example:

10, 30, 90, 270, 810, 2430, ...

This sequence has a factor of 3 between each number.

The values of \(a \) and \(r \) are:
- \(a = 10 \) (the first term)
- \(r = 3 \) (the "common ratio")

The Rule for any term is:

\[
x_n = 10 \times 3^{(n-1)}
\]

So, the 4th term would be:

\[
x_4 = 10 \times 3^{(4-1)} = 10 \times 3^3 = 10 \times 27 = 270
\]

And the 10th term would be:
\[x_{10} = 10 \times 3^{10-1} = 10 \times 3^9 = 10 \times 19683 = 196830 \]

A Geometric Sequence can also have **smaller and smaller** values:

Example:

4, 2, 1, 0.5, 0.25, ...

This sequence has a factor of 0.5 (a half) between each number.

Its Rule is \[x_n = 4 \times (0.5)^{n-1}\]

Why “Geometric” Sequence?

Because it is like increasing the dimensions in **geometry:**

- a line is 1-dimensional and has a length of \(r^1\)
- in 2 dimensions a square has an area of \(r^2\)
- in 3 dimensions a cube has volume \(r^3\)
- \(\ldots\) etc (yes you can have 4 and more dimensions in mathematics).

Geometric Sequences are sometimes called Geometric Progressions (G.P.'s)

Summing a Geometric Series

When you need to sum a Geometric Sequence, there is a handy formula.

To sum:

\[a + ar + ar^2 + \ldots + ar^{(n-1)} \]

Each term is \(ar^k\), where \(k\) starts at 0 and goes up to \(n-1\)
Use this formula:

\[\sum_{k=0}^{n-1} (ar^k) = a \left(1 - r^n \right) \left(1 - r \right) \]

- \(a\) is the first term
- \(r\) is the "common ratio" between terms
- \(n\) is the number of terms

What is that funny symbol? It is called **Sigma Notation**

\[\sum \] (called Sigma) means "sum up"

And below and above it are shown the starting and ending values:

It says "Sum up \(n\) where \(n\) goes from 1 to 4. Answer=10"

The formula is easy to use ... just "plug in" the values of \(a\), \(r\) and \(n\)

Example: Sum the first 4 terms of

\[10, 30, 90, 270, 810, 2430, \ldots \]

This sequence has a factor of 3 between each number.

The values of \(a\), \(r\) and \(n\) are:

- \(a = 10\) (the first term)
- \(r = 3\) (the "common ratio")
- \(n = 4\) (we want to sum the first 4 terms)

So:

\[\sum_{k=0}^{n-1} (ar^k) = a \left(\frac{1 - r^n}{1 - r} \right) \]

Becomes:

\[\sum_{k=0}^{4-1} (10 \cdot 3^k) = 10 \left(\frac{1 - 3^4}{1 - 3} \right) = 400 \]

You could check it yourself:
10 + 30 + 90 + 270 = 400

And, yes, it was easier to just add them in this case, because there were only 4 terms. But imagine you had to sum up lots of terms, then the formula is better to use.

Using the Formula

Let's see the formula in action:

Example: Grains of Rice on a Chess Board

On our page Binary Digits we give an example of grains of rice on a chess board. The question is asked:

When you place rice on the chess board:

- 1 grain on the first square,
- 2 grains on the second square,
- 4 grains on the third and so on,
- ...

... doubling the grains of rice on each square ...

... how many grains of rice in total?

So we have:

- \(a = 1 \) (the first term)
- \(r = 2 \) (doubles each time)
- \(n = 64 \) (64 squares on a chess board)

So:

\[
\sum_{k=0}^{n-1} (ar^k) = a \left(\frac{1 - r^n}{1 - r} \right)
\]

Becomes:

\[
\sum_{k=0}^{63} (ar^k) = 2 \left(\frac{1 - 2^{64}}{1 - 2} \right)
\]

\[
= (1 - 2^{64}) / (-1) = 2^{64} - 1
\]

\[
= 18,446,744,073,709,551,615
\]

Which was exactly the result we got on the Binary Digits page (thank goodness!)
And another example, this time with \(r \) less than 1:

Example: Add up the first 10 terms of the Geometric Sequence that halves each time:

\[
\{ \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \}
\]

The values of \(a \), \(r \) and \(n \) are:

- \(a = \frac{1}{2} \) (the first term)
- \(r = \frac{1}{2} \) (halves each time)
- \(n = 10 \) (10 terms to add)

So:

\[
\sum_{k=0}^{n-1} (ar^k) = a \left(\frac{1 - r^n}{1 - r} \right)
\]

Becomes:

\[
\sum_{k=0}^{10-1} \left(\frac{1}{2} \right)^k = \frac{1}{2} \left(\frac{1 - \left(\frac{1}{2} \right)^{10}}{1 - \frac{1}{2}} \right)
\]

\[
= \frac{1}{2} \left(\frac{1 - \frac{1}{1024}}{\frac{1}{2}} \right)
\]

\[
= 1 - \frac{1}{1024}
\]

\[
= 0.9990234375
\]

Very close to 1.

(Question: if we continue to increase \(n \), what would happen?)

Why Does the Formula Work?

I want to show you why the formula works, because we get to use an interesting "trick" which is worth knowing.

First, we will call the whole sum "\(S \)":

\[
S = a + ar + ar^2 + \ldots + ar^{(n-2)} + ar^{(n-1)}
\]

Next, multiply \(S \) by \(r \):

\[
S \cdot r = ar + ar^2 + ar^3 + \ldots + ar^{(n-1)} + ar^n
\]

Notice that \(S \) and \(S \cdot r \) are similar?

Now subtract them!
\[S = a + ar + ar^2 + \ldots + ar^{n-1} \]
\[S \cdot r = -ar - ar^2 - \ldots - ar^{n-1} - ar^n \]
\[S - S \cdot r = a (1 - r^n) = ar^n \]

Wow! All the terms in the middle neatly cancel out.
(That is the neat trick I wanted to show you.)

By subtracting \(S \cdot r \) from \(S \) we get a simple result:

\[S - S \cdot r = a - ar^n \]

Let's rearrange it to find \(S \):

Factor out \(S \) and \(a \):

\[S(1-r) = a(1-r^n) \]

Divide by \((1-r)\): \[S = a(1-r^n)/(1-r) \]

Which is our formula (ta-da!):

\[\sum_{k=0}^{n-1} (ar^k) = a \left(\frac{1-r^n}{1-r} \right) \]

Infinite Geometric Series

So what happens when \(n \) goes to infinity?

Well ... when \(r \) is less than 1, then \(r^n \) goes to zero and we get:

\[\sum_{k=0}^{\infty} (ar^k) = a \left(\frac{1}{1-r} \right) \]

NOTE: this does not work when \(r \) is 1 or more (or less than -1):

\(r \) must be between (but not including) \(-1 \) and \(1 \)

and \(r \) should not be \(0 \) because you get the sequence \((a,0,0,\ldots)\) which is not geometric

Let's bring back our previous example, and see what happens:
Example: Add up ALL the terms of the Geometric Sequence that halves each time:

\{ 1/2, 1/4, 1/8, 1/16, ... \}

We have:
- \(a = 1/2 \) (the first term)
- \(r = 1/2 \) (halves each time)

And so:

\[
\sum_{k=0}^{\infty} \left(\frac{1}{2} \cdot \left(\frac{1}{2} \right)^k \right) = \frac{1}{2} \left(\frac{1}{1 - \frac{1}{2}} \right)
\]

\[
= \frac{1}{2} \times 1 = \frac{1}{2} = 1
\]

Yes ... adding \((1/2) + (1/4) + (1/8) + ...\) equals **exactly** 1.

Don't believe me? Just look at this square:

By adding up \((1/2) + (1/4) + (1/8) + ...\)

... you end up with the whole thing!

Recurring Decimal

On another page we asked "**Does 0.999... equal 1?**", well, let us see if we can calculate it:

Example: Calculate 0.999...

We can write a recurring decimal as a sum like this:

\[
0.999... = 0.9 + 0.09 + 0.009 + ... = 0.9 \cdot 0.1^0 + 0.9 \cdot 0.1^1 + 0.9 \cdot 0.1^2 + ...
\]

\[
= \sum_{k=0}^{\infty} 0.9 \cdot 0.1^k
\]

And now we can use the formula:

\[
\sum_{k=0}^{\infty} 0.9 \times 0.1^k = 0.9 \left(\frac{1}{1 - 0.1} \right) = 0.9 \left(\frac{1}{0.9} \right) = 1
\]

Yes! 0.999... **does** equal 1.
So there you have it ... Geometric Sequences (and their sums) can do all sorts of amazing and powerful things.