1.10 Composite Transformations

Here you will learn about composite transformations.

Look at the following diagram. It involves two translations. Identify the two translations of triangle ABC.

Watch This

First watch this video to learn about composite transformations.

Click image to the left for more content.

CK-12 FoundationChapter10CompositeTransformationsA

Then watch this video to see some examples.

Click image to the left for more content.

CK-12 FoundationChapter10CompositeTransformationsB
Guidance

In geometry, a transformation is an operation that moves, flips, or changes a shape to create a new shape. A composite transformation is when two or more transformations are performed on a figure (called the preimage) to produce a new figure (called the image).

Example A

Describe the transformations in the diagram below. The transformations involve a reflection and a rotation.

Solution: First line AB is rotated about the origin by 90° CCW.

Then the line $A'B'$ is reflected about the y-axis to produce line $A''B''$.
Example B

Describe the transformations in the diagram below.

Solution: The flag in diagram S is rotated about the origin 180° to produce flag T. You know this because if you look at one point you notice that both x- and y-coordinate points is multiplied by -1 which is consistent with a 180° rotation about the origin. Flag T is then reflected about the line $x = -8$ to produce Flag U.

Example C

Triangle ABC where the vertices of $\triangle ABC$ are $A(-1, -3)$, $B(-4, -1)$, and $C(-6, -4)$ undergoes a composition of transformations described as:

a) a translation 10 units to the right, then

b) a reflection in the x-axis.

Draw the diagram to represent this composition of transformations. What are the vertices of the triangle after both transformations are applied?

Solution:
Triangle $A''B''C''$ is the final triangle after all transformations are applied. It has vertices of $A''(9,3)$, $B''(6,1)$, and $C''(4,4)$.

Concept Problem Revisited

$\triangle ABC$ moves over 6 to the left and down 5 to produce $\triangle A'B'C'$. Then $\triangle A'B'C'$ moves over 14 to the right and up 3 to produce $\triangle A''B''C''$. These translations are represented by the blue arrows in the diagram.
All together $\triangle ABC$ moves over 8 to the right and down 2 to produce $\triangle A''B''C''$. The total translations for this movement are seen by the green arrow in the diagram above.

Vocabulary

Image
In a transformation, the final figure is called the *image*.

Preimage
In a transformation, the original figure is called the *preimage*.

Transformation
A *transformation* is an operation that is performed on a shape that moves or changes it in some way. There are four types of transformations: translations, reflections, dilations and rotations.

Dilation
A *dilation* is a transformation that enlarges or reduces the size of a figure.

Translation
A *translation* is an example of a transformation that moves each point of a shape the same distance and in the same direction. Translations are also known as *slides*.

Rotation
A *rotation* is a transformation that rotates (turns) an image a certain amount about a certain point.

Reflection
A *reflection* is an example of a transformation that flips each point of a shape over the same line.

Composite Transformation
A *composite transformation* is when two or more transformations are combined to form a new image from the preimage.
Guided Practice

1. Describe the transformations in the diagram below. The transformations involve a rotation and a reflection.

2. Triangle XYZ has coordinates $X(1,2)$, $Y(-3,6)$ and $Z(4,5)$. The triangle undergoes a rotation of 2 units to the right and 1 unit down to form triangle $X'Y'Z'$. Triangle $X'Y'Z'$ is then reflected about the y-axis to form triangle $X''Y''Z''$. Draw the diagram of this composite transformation and determine the vertices for triangle $X''Y''Z''$.

3. The coordinates of the vertices of ΔJAK are $J(1,6)$, $B(2,9)$, and $C(7,10)$.
 a) Draw and label ΔJAK.
 b) ΔJAK is reflected over the line $y = x$. Graph and state the coordinates of $\Delta J'A'K'$.
 c) $\Delta J'A'K'$ is then reflected about the x-axis. Graph and state the coordinates of $\Delta J''A''K''$.
 d) $\Delta J''A''K''$ undergoes a translation of 5 units to the left and 3 units up. Graph and state the coordinates of $\Delta J'''A'''K'''$.

Answers:

1. The transformations involve a reflection and a rotation. First line AB is reflected about the y-axis to produce line $A'B'$.
Then the line $A'B'$ is rotated about the origin by 90° CCW to produce line $A''B''$.

2.

3.
Practice

1. A point \(X\) has coordinates (-1, -8). The point is reflected across the y-axis to form \(X'\). \(X'\) is translated over 4 to the right and up 6 to form \(X''\). What are the coordinates of \(X'\) and \(X''\)?

2. A point \(A\) has coordinates (2, -3). The point is translated over 3 to the left and up 5 to form \(A'\). \(A'\) is reflected across the x-axis to form \(A''\). What are the coordinates of \(A'\) and \(A''\)?

3. A point \(P\) has coordinates (5, -6). The point is reflected across the line \(y = -x\) to form \(P'\). \(P'\) is rotated about the origin 90° CW to form \(P''\). What are the coordinates of \(P'\) and \(P''\)?

4. Line \(JT\) has coordinates \(J(-2, -5)\) and \(T(2, 3)\). The segment is rotated about the origin 180° to form \(J'T'\). \(J'T'\) is translated over 6 to the right and down 3 to form \(J''T''\). What are the coordinates of \(J'T'\) and \(J''T''\)?

5. Line \(SK\) has coordinates \(S(-1, -8)\) and \(K(1, 2)\). The segment is translated over 3 to the right and up 3 to form \(S'K'\). \(S'K'\) is rotated about the origin 90° CCW to form \(S''K''\). What are the coordinates of \(S'K'\) and \(S''K''\)?

6. A point \(K\) has coordinates (-1, 4). The point is reflected across the line \(y = x\) to form \(K'\). \(K'\) is rotated about the origin 270° CW to form \(K''\). What are the coordinates of \(K'\) and \(K''\)?

Describe the following composite transformations:
12. Explore what happens when you reflect a shape twice, over a pair of parallel lines. What one transformation could have been performed to achieve the same result?

13. Explore what happens when you reflect a shape twice, over a pair of intersecting lines. What one transformation could have been performed to achieve the same result?

14. Explore what happens when you reflect a shape over the x-axis and then the y-axis. What one transformation could have been performed to achieve the same result?

15. A composition of a reflection and a translation is often called a glide reflection. Make up an example of a glide reflection. Why do you think it’s called a **glide** reflection?