15.3 Heterogeneous Aqueous Systems

Key Concepts
• What is the difference between a suspension and a solution?
• What distinguishes a colloid from a suspension and a solution?

Vocabulary
suspension
colloid
Tyndall effect
Brownian motion
emulsion

Reading Strategy
Previewing: Before you read, rewrite the headings of this section as questions. As you read, write answers to your questions.

Suspensions
So far in this chapter, you have learned about homogeneous mixtures that are formed when compounds such as inorganic acids, bases, and ionic salts mix with water. These mixtures are classified as solutions. In contrast, heterogeneous mixtures are not solutions.

If you shake a piece of clay with water, the clay breaks into fine particles. The water becomes cloudy because the clay particles are suspended in the water. But if you stop shaking, the particles begin to settle out. A suspension is a mixture from which particles settle out upon standing.

A suspension differs from a solution because the particles of a suspension are much larger and do not stay suspended indefinitely. The particles in a typical suspension have an average diameter greater than 1000 nm. By contrast, the particle size in a solution is usually about 1 nm. The larger size of suspended particles means that gravity plays a larger role in causing them to settle out of the mixture. Cooks use suspensions of flour or cornstarch in water to thicken sauces and gravies. These mixtures must be shaken or stirred immediately before use because the suspended particles quickly settle out.

Suspensions are heterogeneous because at least two substances can be clearly identified. In the example of clay particles mixed with water, you can clearly see the dispersed phase (clay) in the dispersion medium (water). Figure 15.14 shows that if muddy water is filtered, the filter traps the suspended clay particles and clear water passes through.

Figure 15.14 A suspension is a heterogeneous mixture. Suspended particles can be removed by filtration. Comparing and Contrasting: How does the filtration of a suspension compare with the filtration of a solution?

Answers to...
Figure 15.14 When a solution is filtered, nothing is removed. When a suspension is filtered, suspended particles are removed.

Section Resources
Print
• Guided Reading and Study Workbook, Section 15.3
• Core Teaching Resources, Section 15.3
• Transparencies, T166–T168
• Small-Scale Chemistry Laboratory Manual, Lab 24

Technology
• Interactive Textbook with ChemASAP, Assessment 15.3
• Go Online, Section 15.3

Guide for Reading
Guide for Reading
Build Vocabulary
Have students make a Venn diagram using the following vocabulary terms: solution, suspension, colloid, Tyndall effect, Brownian motion.

Reading Strategy
Predict: Before students begin to read this chapter, have them preview the section and predict how the properties of suspensions and colloids differ from those of solutions. Then, as they read, have them correct any misconceptions they may have.

INSTRUCT
Instruct

Have students study the photograph and read the text. Comment that gelatin is referred to as a heterogeneous mixture called a colloid. Ask, What does that tell you about the composition of gelatin? (Its composition is not uniform throughout.) If a colloid such as gelatin differs from a solution with respect to the size of its particles, would you expect a colloid to have smaller or larger particles than a solution? (larger)

Connecting to Your World

It wiggles and jiggles. It comes in many colors and flavors. When you pop it in your mouth, it dissolves. It is gelatin, one of the most popular desserts in the United States. In fact, more than a million packages of gelatin are purchased or eaten every day. Gelatin has even traveled into space. In 1996, American astronaut Shannon Lucid shared a gelatin dessert with her Russian crewmates. Gelatin is a heterogeneous mixture called a colloid. In this section, you will learn more about the characteristics of colloids and a related mixture called a suspension.

Suspensions

Guide for Reading

Key Concepts
• What is the difference between a suspension and a solution?
• What distinguishes a colloid from a suspension and a solution?

Vocabulary
suspension
colloid
Tyndall effect
Brownian motion
emulsion

Reading Strategy
Previewing: Before you read, rewrite the headings of this section as questions. As you read, write answers to your questions.

Suspensions
So far in this chapter, you have learned about homogeneous mixtures that are formed when compounds such as inorganic acids, bases, and ionic salts mix with water. These mixtures are classified as solutions. In contrast, heterogeneous mixtures are not solutions.

If you shake a piece of clay with water, the clay breaks into fine particles. The water becomes cloudy because the clay particles are suspended in the water. But if you stop shaking, the particles begin to settle out. A suspension is a mixture from which particles settle out upon standing.

A suspension differs from a solution because the particles of a suspension are much larger and do not stay suspended indefinitely. The particles in a typical suspension have an average diameter greater than 1000 nm. By contrast, the particle size in a solution is usually about 1 nm. The larger size of suspended particles means that gravity plays a larger role in causing them to settle out of the mixture. Cooks use suspensions of flour or cornstarch in water to thicken sauces and gravies. These mixtures must be shaken or stirred immediately before use because the suspended particles quickly settle out.

Suspensions are heterogeneous because at least two substances can be clearly identified. In the example of clay particles mixed with water, you can clearly see the dispersed phase (clay) in the dispersion medium (water). Figure 15.14 shows that if muddy water is filtered, the filter traps the suspended clay particles and clear water passes through.

Figure 15.14 A suspension is a heterogeneous mixture. Suspended particles can be removed by filtration. Comparing and Contrasting: How does the filtration of a suspension compare with the filtration of a solution?

Answers to...
Figure 15.14 When a solution is filtered, nothing is removed. When a suspension is filtered, suspended particles are removed.

Section Resources
Print
• Guided Reading and Study Workbook, Section 15.3
• Core Teaching Resources, Section 15.3
• Transparencies, T166–T168
• Small-Scale Chemistry Laboratory Manual, Lab 24

Technology
• Interactive Textbook with ChemASAP, Assessment 15.3
• Go Online, Section 15.3
Section 15.3 (continued)

Suspensions

Discuss

Refer students to the Career feature on wastewater treatment. Explain that sedimentation and filtration play important roles in the treatment process. First, large particles are removed from the water in large settling tanks by sedimentation. Lime and alum are added to help coagulate the particles. Filtration through sandy loams (diatomaceous earth) then removes the suspended matter and may absorb colloidal material as well.

Colloids

Word Origins

Egg white, jellies, and other sols and gels often have a gluelike appearance.

Use Visuals

Table 15.3 Display Table 15.3 on an overhead projector. Explain that colloids are characterized by the physical state of the dispersed phase and of the continuous phase—also called dispersion medium. Ask, What is the dispersion medium in fog? (air) What is dispersed in fog? (water droplets) Help students understand this two-part system by comparing it to a solution, which, instead of a dispersed phase and a dispersion medium, consists of a solute and a solvent.

Discuss

Point out that the main difference between solutions, suspensions, and colloids is particle size. Solution particles are typically less than 1 nm in diameter. Colloid particles are between 1 nm and 1000 nm in diameter. Suspension particles are typically larger than 1000 nm. Smaller particles are less susceptible to the effects of gravity and are influenced more by the effects of Brownian movement. The collisions of molecules with extremely small colloidal particles are sufficiently energetic to move colloidal particles in a random fashion that prevents their settling to the bottom.

Colloids

You read in Connecting to Your World that gelatin is a type of mixture called a colloid. A colloid is a heterogeneous mixture containing particles that range in size from 1 nm to 1000 nm. The particles are spread throughout the dispersion medium, which can be a solid, liquid, or gas. The first substances to be identified as colloids were glues. Other colloids include such mixtures as gelatin, paint, aerosol sprays, and smoke. Table 15.3 lists some common colloidal systems and gives examples of familiar colloids.

How do the properties of colloids differ from those of suspensions and solutions? Like suspensions, many colloids are cloudy or milky in appearance when they are concentrated. Like solutions, colloids may look clear or almost clear when they are dilute. The important difference between colloids and solutions and suspensions is in the size of the particles. Colloids have particles smaller than those in suspensions and larger than those in solutions. These intermediate-sized particles cannot be retained by filter paper as are the larger particles of a suspension, and they do not settle out with time. Colloids can be distinguished by the Tyndall effect and by the observation of Brownian motion. They are also subject to coagulation or clumping together, and they can be emulsified or made stable.

<table>
<thead>
<tr>
<th>System</th>
<th>Dispersed phase</th>
<th>Dispersion medium</th>
<th>Type</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas</td>
<td>liquid</td>
<td>foam</td>
<td></td>
<td>whipped cream</td>
</tr>
<tr>
<td>gas</td>
<td>solid</td>
<td>foam</td>
<td></td>
<td>marshmallow</td>
</tr>
<tr>
<td>liquid</td>
<td>liquid</td>
<td>emulsion</td>
<td></td>
<td>milk, mayonnaise</td>
</tr>
<tr>
<td>liquid</td>
<td>gas</td>
<td>aerosol</td>
<td></td>
<td>fog, aerosols</td>
</tr>
<tr>
<td>solid</td>
<td>gas</td>
<td>smoke</td>
<td></td>
<td>dust in air</td>
</tr>
<tr>
<td>solid</td>
<td>liquid</td>
<td>sols and gels</td>
<td></td>
<td>egg white, jellies, paint, blood, colloidal gold, starch in water, gelatin</td>
</tr>
</tbody>
</table>

Word Origins

Colloid comes from the Greek word kolla meaning “glue.” The word colloid is based on the glue-like appearance of many colloids and was coined by the English scientist Thomas Graham in 1861. As you read, identify examples of colloids that meet Graham’s original definition.

Differentiated Instruction

English Learners

Have students use a dictionary to look up the various uses of the word disperse or dispersion. Ask students to explain how the seeds of a plant being dispersed by the wind are related to the dispersed phase and dispersion medium of a colloid.

L1 L2 L3
Ordinarily you can’t see a beam of sunlight unless flashes of light, or scintillations, are seen when colloidal particles also tend to stay suspended because the light passes through particles of water (mist) or dust in the air. These particles scatter the sunlight. Similarly, a beam of light is visible as it passes through a colloid. The scattering of visible light by colloidal particles is called the Tyndall effect. Suspensions also exhibit the Tyndall effect, but solutions do not. The particles in solutions are too small to scatter light. The path of light is visible only when the light is scattered by particles. Fog or mist is a colloid and thus exhibits the Tyndall effect, but solutions do not. The particles in solutions are too small to scatter light. Figure 15.15 shows how the Tyndall effect can differentiate solutions from colloids and suspensions.

Brownian Motion

Particles reflecting and scattering the light move erratically. The chaotic movement of colloidal particles, which was first observed by the Scottish botanist Robert Brown (1773–1858), is called Brownian motion. Brownian motion is caused by collisions of the molecules of the dispersion medium with the small, dispersed colloidal particles. These collisions help prevent the colloidal particles from settling.

Coagulation

Colloidal particles also tend to stay suspended because they become charged by adsorbing ions from the dispersing medium onto their surface. Some colloidal particles become positively charged by adsorbing positively charged ions. Other colloidal particles become negatively charged by adsorbing negatively charged ions. All the colloidal particles in a particular colloidal system will have the same charge, although the colloidal system is neutral. The repulsion between the like-charged particles prevents the particles from forming heavier aggregates that would have a greater tendency to settle out. Thus, a colloidal system can be destroyed or coagulated by the addition of ions having a charge opposite to that of the colloidal particles. The added ions neutralize the charged colloidal particles. The particles can clump together to form heavier aggregates and precipitate from the dispersion.

The Tyndall Effect

Ordinarily you can’t see a beam of sunlight unless the light passes through particles of water (mist) or dust in the air. These particles scatter the sunlight. Similarly, a beam of light is visible as it passes through a colloid. The scattering of visible light by colloidal particles is called the Tyndall effect. Suspensions also exhibit the Tyndall effect, but solutions do not. The particles in solutions are too small to scatter light. The path of light is visible only when the light is scattered by particles. Fog or mist is a colloid and thus exhibits the Tyndall effect, but solutions do not. The particles in solutions are too small to scatter light. Figure 15.15 shows how the Tyndall effect can differentiate solutions from colloids and suspensions.

Brownian Motion

Flashers of light, or scintillations, are seen when colloids are studied under a microscope. Colloids scintillate because the particles reflecting and scattering the light move erratically. The chaotic movement of colloidal particles, which was first observed by the Scottish botanist Robert Brown (1773–1858), is called Brownian motion. Brownian motion is caused by collisions of the molecules of the dispersion medium with the small, dispersed colloidal particles. These collisions help prevent the colloidal particles from settling.

Coagulation

Colloidal particles also tend to stay suspended because they become charged by adsorbing ions from the dispersing medium onto their surface. Some colloidal particles become positively charged by adsorbing positively charged ions. Other colloidal particles become negatively charged by adsorbing negatively charged ions. All the colloidal particles in a particular colloidal system will have the same charge, although the colloidal system is neutral. The repulsion between the like-charged particles prevents the particles from forming heavier aggregates that would have a greater tendency to settle out. Thus, a colloidal system can be destroyed or coagulated by the addition of ions having a charge opposite to that of the colloidal particles. The added ions neutralize the charged colloidal particles. The particles can clump together to form heavier aggregates and precipitate from the dispersion.

Facts and Figures

Paint

Students may be interested in knowing why paint must be stirred before it is used. Explain that latex paint is a complex mixture of binders, pigments, and drying agents. Some ingredients are water-soluble; others are present as dispersed particles. For uniform color and composition, the paint must be stirred well before being used.

Answers to...

Checkpoint

What is Brownian motion?

TEACHER Demo

Motion of Colloidal Particles

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Students observe the Tyndall effect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>whole milk, water, beaker, stirring rod, projector or laser pointer</td>
</tr>
<tr>
<td>Procedure</td>
<td>Add a small amount of whole milk to some water in a beaker, and stir to mix. In a darkened room, shine a light from a projector or a laser pointer through the beaker.</td>
</tr>
<tr>
<td>Expected Outcome</td>
<td>When viewed from the side, the path of the light beam is observed. This is the Tyndall effect. Students also can observe Brownian motion of airborne dust particles in the light beam. Caution: if a laser pointer is used, warn students not to look directly at it.</td>
</tr>
<tr>
<td>Relate</td>
<td>Ask, Why it is usually recommended that drivers use low beams when driving under foggy conditions at night? (Fog is a colloid that produces the Tyndall effect. Bright lights produce a higher degree of light scattering in all directions, including straight back into the driver’s eyes.)</td>
</tr>
</tbody>
</table>
Section 15.3 (continued)

Evaluate Understanding

Ask, In what way are colloids similar to solutions? (In both, dispersed particles are small enough to pass through standard filter paper and to withstand the pull of gravity.) In what way are colloids similar to suspensions? (Both types of mixtures produce the Tyndall effect.)

Reteach

On the board, draw the relative sizes of solute, colloid, and suspension particles by making an analogy to golf balls, baseballs, and basketballs. Ask students which “particles” would get caught in a sieve a bit smaller than a basketball hoop and which would pass through? Remind students that solution particles are typically less than 1 nm in diameter, whereas colloid particles are ten to one thousand times larger and those of suspensions exceed the largest colloid particles.

Elements Handbook

Students’ paragraphs should mention that electrolytes are excreted from the body in urine and sweat and can be restored by drinking water, juices, or sports drinks.

Interactive Textbook

If your class subscribes to the Interactive Textbook, use it to review key concepts in Section 15.3.

Table 15.4

<table>
<thead>
<tr>
<th>Property</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solution</td>
</tr>
<tr>
<td>Particle type</td>
<td>ions, atoms, small molecules</td>
</tr>
<tr>
<td>Particle size</td>
<td>0.1–1 nm</td>
</tr>
<tr>
<td>Effect of light</td>
<td>no scattering</td>
</tr>
<tr>
<td>Effect of gravity</td>
<td>stable, does not separate</td>
</tr>
<tr>
<td>Filtration</td>
<td>particles not retained on filter</td>
</tr>
<tr>
<td>Uniformity</td>
<td>homogeneous</td>
</tr>
</tbody>
</table>

Emulsions

An emulsion is a colloidal dispersion of a liquid in a liquid. An emulsifying agent is essential for the formation of an emulsion and for maintaining the emulsion’s stability. For example, oils and greases are not soluble in water. However, they readily form a colloidal dispersion if soap or detergent is added to the water. Soaps and detergents are emulsifying agents. One end of a large soap or detergent molecule is polar and is attracted to water molecules. The other end of the soap or detergent molecule is nonpolar and is soluble in oil or grease. Soaps and other emulsifying agents thus allow the formation of colloidal dispersions between liquids that do not ordinarily mix. Figure 15.16 shows a familiar example of an emulsion—mayonnaise. Mayonnaise is a heterogeneous mixture of oil and vinegar. Such a mixture would quickly separate without the presence of egg yolk, which is the emulsifying agent. Other foods such as milk, margarine, and butter are also emulsions. Cosmetics, shampoos, and lotions are formulated with emulsifiers to maintain consistent quality. Table 15.4 summarizes the properties of solutions, colloids, and suspensions.

Figure 15.16 The addition of an egg yolk to a mixture of oil and vinegar produces mayonnaise, a stable emulsion.

Section 15.3 Assessment

16. Key Concept How does a suspension differ from a solution?
17. Key Concept What distinguishes a colloid from a suspension and a solution?
18. How can you determine through observation that a mixture is a suspension?
20. How can the Tyndall effect be used to distinguish between a colloid and a solution?

15.3 Section Assessment

Emulsions

An emulsion is a colloidal dispersion of a liquid in a liquid. An emulsifying agent is essential for the formation of an emulsion and for maintaining the emulsion's stability. For example, oils and greases are not soluble in water. However, they readily form a colloidal dispersion if soap or detergent is added to the water. Soaps and detergents are emulsifying agents. One end of a large soap or detergent molecule is polar and is attracted to water molecules. The other end of the soap or detergent molecule is nonpolar and is soluble in oil or grease. Soaps and other emulsifying agents thus allow the formation of colloidal dispersions between liquids that do not ordinarily mix. Figure 15.16 shows a familiar example of an emulsion—mayonnaise. Mayonnaise is a heterogeneous mixture of oil and vinegar. Such a mixture would quickly separate without the presence of egg yolk, which is the emulsifying agent. Other foods such as milk, margarine, and butter are also emulsions. Cosmetics, shampoos, and lotions are formulated with emulsifiers to maintain consistent quality. Table 15.4 summarizes the properties of solutions, colloids, and suspensions.
Purpose

This feature builds on the discussion of water in the liquid state in section 15.1 and on some of the substances and materials that might be dissolved or suspended in the water.

Background

• 1999 marked the 25th year of public health protection under the Safe Drinking Water Act. The Act, passed in 1974 and amended in 1986 and 1996, gives the Environmental Protection Agency (EPA) the authority to set drinking water standards. Drinking water standards apply to public water systems, i.e., systems that provide water for human consumption through at least 15 service connections, or regularly serve at least 25 individuals. Public water systems include municipal water companies, homeowner associations, schools, businesses, campgrounds and shopping malls.

• Standards for safety are constantly being examined by the EPA and may change as new data become available. For example, the standard for arsenic was recently changed from 50 ppb to 10 ppb.

• Coliform bacteria are part of the normal bacterial flora of the intestinal tract of humans and other animals. E. coli is the best known of these bacteria, but there are many other species. The presence of coliform bacteria in the water supply is a strong indication of contamination by human or animal wastes. Microbes in these wastes can cause diarrhea, cramps, nausea, headaches, or other symptoms.

• Cryptosporidium is a parasite that enters lakes and rivers through sewage and animal waste. It causes cryptosporidiosis, a mild gastrointestinal disease. However, the disease can be severe or fatal for people with severely weakened immune systems.

Facts and Figures

Parts per million

Parts per million, or ppm, is a unit of concentration. It is commonly used when measuring levels of pollutants in air and water. One ppm is 1 part in 1,000,000. A solution whose concentration is 1 ppm contains 1 g of solute for each million (10^6) grams of solution. Because the density of water is 1 g/mL, 1 kg of a dilute aqueous solution will have a volume very close to 1 L. Thus, 1 ppm also corresponds to 1 mg of solute per liter of solution. The maximum allowable concentration of arsenic is 0.01 ppm or 0.01 mg of arsenic per liter of water.