1.2 FOCUS

Objectives
1.2.1 Identify some areas of research affected by chemistry.
1.2.2 Describe some examples of research in chemistry.
1.2.3 Distinguish between macroscopic and microscopic views.

Guide for Reading

Build Vocabulary

Word Parts Macroscopic and microscopic share the root scop, which means "to look at" in Greek. They differ in their prefixes: macro is from the Greek makr, large; micro is from mikr, small.

Reading Strategy

Visualize Point out that each page in this section is devoted to a different broad area of research. Ask students to visualize topics they would like to investigate as they read about each area.

2 INSTRUCT

Connecting to Your World

Point out that curiosity and a tendency to "tinker" with materials are not traits restricted to professional scientists. Ask, Why would the carved mussel shells attract fish? (The carved shells resemble small fish that larger fish might eat.) Why was woven cloth more desirable than animal skins? (It was softer and dried more quickly.)

Materials

The search for new materials continues. Chemists design materials to fit specific needs. Often they find inspiration in nature. In 1948, while hiking through the woods of his native Switzerland, George de Mestral took a close look at the pesky burrs that stuck to his clothing. When he looked at the burrs under magnification, he saw that each burr was covered with many tiny hooks that could latch on to tiny loops in the woven cloth of his clothing. George had a weaver make two cloth tapes. On the surface of one tape were hooks, and on the surface of the other tape were loops that the hooks could fit into, as shown in Figure 1.6. In 1955 George patented the design for his hook-and-loop tapes. These tapes are used as fasteners for items such as shoes and gloves.

This story illustrates two different ways of looking at the world—the macroscopic view and the microscopic view. The burrs that George de Mestral used as a model for his tapes are small compared to many objects in nature. However, they were large enough for George to see. Burrs belong to the macroscopic world, the world of objects that are large enough to see with the unaided eye. George needed more than his own vision to see the hooks on a burr. The hooks belong to the microscopic world, or the world of objects that can be seen only under magnification.

Figure 1.6 This is a magnified view of hook-and-loop tape. Color was added to the photo to highlight the structures. Classifying Does the photograph show a macroscopic or a microscopic view of the tape? Explain.

Section Resources

Print

• Guided Reading and Study Workbook, Section 1.2
• Core Teaching Resources, Section 1.2 Review
• Transparencies, T3–T4

Technology

• Interactive Textbook with ChemASAP, Assessment 1.2
Energy

Energy is necessary to meet the needs of a modern society. It is used to heat buildings, manufacture goods, and process foods. It is used to transport people and goods between locations. With population growth and more industrialization around the globe, the demands for energy continue to increase. There are two ways to meet the demand for energy—conserve energy resources and produce more energy.

Conservation

One of the easiest ways to conserve energy is through the use of insulation. Much of the energy consumed is used to keep houses warm and freezers cold. Insulation acts as a barrier to heat flow from the inside to the outside of a house or from the outside to the inside of a freezer. The foam used in drink cups provides excellent insulation because it contains pockets of trapped air. One of the most exciting modern insulation materials devised by chemists is SEAgel, which is a foam made from seaweed. SEAgel is very lightweight. In fact, SEAgel is so light that it can float on soap bubbles, as shown in Figure 1.7.

Production

The burning of coal, petroleum, and natural gas is a major source of energy. These materials are called fossil fuels because they formed from the remains of ancient plants and animals. Scientists are always looking for new sources of energy because the supply of fossil fuels is limited. One intriguing possibility is fuels obtained from plants. Oil from the soybeans shown in Figure 1.8 is used to make biodiesel. Regular diesel fuel is a petroleum product that produces an irritating black exhaust when it burns. When biodiesel burns, the exhaust smells like French fries!

Storage

Batteries are devices that use chemicals to store energy that will be released as electric current when the batteries are used. Batteries vary in size, power, and hours of useful operation. For some applications, it is important to have batteries that can be recharged rather than thrown away. One application that benefits from rechargeable batteries is cordless tools. These tools were first developed for NASA. Astronauts in the Apollo program needed a way to drill beneath the Moon’s surface to collect samples. Other devices that use rechargeable batteries are digital cameras, wireless phones, and laptop computers.

Checkpoint: What plant is a source of biodiesel?

Facts and Figures

Insulation

Air is a good barrier to the movement of thermal energy as long as the air is not moving. In fiberglass, air is trapped by a network of thin fibers that are woven together. In foam insulation, the air pockets are completely enveloped by the solid that makes up the framework of the foam. SEAgel, is made of agar, which is derived from seaweed. A gelatin-like mixture of agar and water is freeze-dried to remove the wates. What is left is a honeycomb of dried agar filled with air. SEAgel has a density approximately equal to that of air. It is also biodegradable.

Answers to...

Checkpoints: microscopic; It shows what cannot be seen by the unaided eye.

Figure 1.6 The supply of diesel fuel is limited. Is the supply of soybeans limited?

Figure 1.8 Oil from soybeans can be used in a substitute for regular diesel fuel.
Medicine and Biotechnology

Relate

Use the Technology & Society feature, Nature’s Pharmacy, on pp. 18–19 to illustrate the contributions that chemists have made to medicine. Explain that the active ingredient in a prescription drug or over-the-counter remedy often is different from the natural chemical on which it is based. For example, the active ingredient that Johann Buchner isolated from willow bark in 1828 was salicin, which chemists used to produce salicylic acid. Later, chemists developed acetylsalicylic acid (aspirin), which had beneficial properties that were similar to those of salicylic acid but with less irritation. (When students study functional groups in Chapter 23, you could return to this topic and compare the structural formulas for salicin, salicylic acid, and acetylsalicylic acid.)

Facts and Figures

Human Genome Project

Identifying all the genes in human DNA and determining the sequences of base pairs were not the only goals of the Human Genome Project. Other aims were to develop analytical tools that could be transferred to the private sector and address any ethical, legal, and social issues (ESLI).
Agriculture

The world’s population is increasing, but the amount of land available to grow food is decreasing. Land that was once used for agriculture is now used for homes and industries. So it is important to ensure that land used for agriculture is as productive as possible. Chemists help to develop more productive crops and safer, more effective ways to protect crops.

Productivity

One way to track productivity is to measure the amount of edible food that is grown on a given unit of land. Some factors that decrease productivity are poor soil quality, lack of water, weeds, plant diseases, and pests that eat crops. Chemists can help with many of these problems. They test soil to see if it contains the right chemicals to grow a particular crop and recommend ways to improve the soil. They use biotechnology to develop plants that are more likely to survive a drought or insect attack.

Chemists can also help to conserve water. In many regions, water is not an abundant resource. Finding reliable ways to determine when a crop needs water is important. The jellyfish in Figure 1.10 has a gene that causes it to glow. If that gene is inserted into a potato plant, the plant glows when it needs to be watered. These altered plants would be removed from the field before the rest of the crop was harvested.

Crop Protection

For years, farmers have used chemicals to attack insect pests. In the past, these chemicals were nonspecific; that is, a chemical designed to kill a pest could also kill useful insects. Today, the trend is toward chemicals that are designed to treat specific problems. These chemicals are often similar to the chemicals that plants produce for protection.

Chemists sometimes use chemicals produced by insects to fight insect pests. Female insects may produce chemicals that attract male insects. This type of chemical has proved effective in combating pinworms. The worms leave holes and black blotches when they tunnel into tomatoes. Pinworms mate when they are in the moth stage of development. The plastic tube wrapped around the stem of the tomato plant in Figure 1.11 contains the chemical that a female pinworm moth emits to attract male moths. When the chemical is released from these tubes, it interferes with the mating process so that fewer pinworms are produced.

FYI

A dehydrated altered potato plant glows under a black light. Although potatoes tend to grow larger when the plants are over-watered, it may be necessary to conserve water. Also, excess water can cause nutrients to be leached from soil.

Crop Protection

For years, farmers have used chemicals to attack insect pests. In the past, these chemicals were nonspecific; that is, a chemical designed to kill a pest could also kill useful insects. Today, the trend is toward chemicals that are designed to treat specific problems. These chemicals are often similar to the chemicals that plants produce for protection.

Chemists sometimes use chemicals produced by insects to fight insect pests. Female insects may produce chemicals that attract male insects. This type of chemical has proved effective in combating pinworms. The worms leave holes and black blotches when they tunnel into tomatoes. Pinworms mate when they are in the moth stage of development. The plastic tube wrapped around the stem of the tomato plant in Figure 1.11 contains the chemical that a female pinworm moth emits to attract male moths. When the chemical is released from these tubes, it interferes with the mating process so that fewer pinworms are produced.

FYI

A dehydrated altered potato plant glows under a black light. Although potatoes tend to grow larger when the plants are over-watered, it may be necessary to conserve water. Also, excess water can cause nutrients to be leached from soil.
The Environment

One unintended consequence of new technologies is the production of pollutants. A pollutant is a material found in air, water, or soil that is harmful to humans or other organisms. Chemists help to identify pollutants and prevent pollution.

Identify Pollutants. Lead is a pollutant with a long history. The Romans used lead pipes for plumbing and stored their wine in lead-glazed vessels. Brain damage from lead poisoning may have caused Roman rulers to make bad decisions, which led to the fall of the Roman Empire. Until the mid-1900s, lead was used in many products, including paints and gasoline. A study done in 1971 showed that the level of lead that is harmful to humans is much lower than had been thought, especially for children. Low levels of lead in the blood can permanently damage the nervous system of a growing child. This damage causes many problems, including a reduced ability to learn.

Prevent Pollution. The use of lead paint in houses was banned in 1978. Using lead in gasoline and in public water supply systems was banned in 1986. Today, the major source of lead in children is lead-based paint in about 39 million homes built before 1978. When children play with flakes of peeling paint or touch surfaces covered with paint dust, they can transfer the paint to their mouths with their fingers. The strategies used to prevent lead poisoning include testing children’s blood for lead, regulation of home sales to families with young children, and public awareness campaigns with posters like the one in Figure 1.12. The graph in Figure 1.13 shows the results of these efforts.

The Romans used lead pipes for plumbing and stored their wine in lead-glazed vessels. Brain damage from lead poisoning may have caused Roman rulers to make bad decisions, which led to the fall of the Roman Empire. Until the mid-1900s, lead was used in many products, including paints and gasoline. A study done in 1971 showed that the level of lead that is harmful to humans is much lower than had been thought, especially for children. Low levels of lead in the blood can permanently damage the nervous system of a growing child. This damage causes many problems, including a reduced ability to learn.

Prevent Pollution. The use of lead paint in houses was banned in 1978. Using lead in gasoline and in public water supply systems was banned in 1986. Today, the major source of lead in children is lead-based paint in about 39 million homes built before 1978. When children play with flakes of peeling paint or touch surfaces covered with paint dust, they can transfer the paint to their mouths with their fingers. The strategies used to prevent lead poisoning include testing children’s blood for lead, regulation of home sales to families with young children, and public awareness campaigns with posters like the one in Figure 1.12. The graph in Figure 1.13 shows the results of these efforts.

Staying Gasoline Additives

CLASS Activity

Studying Gasoline Additives

Have students find out what chemicals are used as additives in gasoline today. Students might start by looking at labels on gas pumps, by contacting the companies that manufacture these products, and by looking up literature published by the Environmental Protection Agency. Additional questions students should answer include: Why are these alternatives to lead safer? Are there any disadvantages to using these alternative chemicals?

Interpreting Graphs

a. 88.2%

b. 440,000

c. After lead was banned in gasoline and in public water supply systems, less lead entered the environment.

Enrichment Question

Ask students, Why has the reduction in lead levels slowed down since the first dramatic drop between 1980 and 1988? (The major remaining source of lead is the existing paint in old houses, not a new product whose composition can be controlled.)

Figure 1.12 This poster was used to warn people about the danger to children from lead-based paint.

Figure 1.13 This graph shows data on children in the United States with higher than acceptable levels of lead in their blood.
The Universe

Scientists assume that the methods used to study Earth can be applied to other objects in the universe. To study the universe, chemists gather data from afar and analyze matter that is brought back to Earth.

In the early 1800s, scientists began to study the composition of stars by analyzing the light they transmitted to Earth. In 1868, Pierre Janssen discovered a gas on the sun’s surface that was not known on Earth. Norman Lockyer named the gas helium from the Greek word helios, meaning “sun.” In 1895, William Ramsay discovered helium on Earth.

Because the moon and the planets do not emit light, scientists must use other methods to gather data about these objects. They depend on matter brought back to Earth by astronauts or on probes that can analyze matter in space. Chemists have analyzed more than 850 pounds of moon rocks that were brought back to Earth. The large rock in Figure 1.14a is similar to rocks formed by volcanoes on Earth, suggesting that vast oceans of molten lava once covered the moon’s surface. Figure 1.14b is a drawing of the robotic vehicle Opportunity. The vehicle was designed to determine the chemical composition of rocks and soil on Mars. Data collected at the vehicle’s landing site indicated that the site was once drenched with water.

1.2 Section Assessment

8. **Key Concept** When chemists develop new materials, what is their general goal?

9. **Key Concept** Name three ways chemists help meet the demand for energy.

10. **Key Concept** How do chemists help doctors treat patients?

11. **Key Concept** What role do chemists play in agriculture?

12. **Key Concept** How do chemists help protect the environment?

13. **Key Concept** Describe two ways that chemists study the universe.

14. Use lead as an example to explain the meaning of the term pollutant.

15. Use an example to compare and contrast the terms macroscopic and microscopic.

Composition of the Sun

Composition of the Sun

Have students look at page R4 of the Elements Handbook for data on the composition of the sun. Have them explain how scientists can know the composition of the sun without collecting matter from the sun. Ask students to explain why it would be difficult to present the data as a pie chart or bar graph.

ASSESS

Evaluate Understanding

Ask students to name some recent technological advances that were made possible through the study of chemistry.

Reteach

Have students suggest other ways to classify areas impacted by chemistry other than the system used in this section. One alternative might be to focus on the human need for food, clothing, shelter, and transportation.

Phytoremediation

Phytoremediation involves the use of plants to remove pollutants from soil or water. A plant can absorb lead through its roots and the lead can accumulate in the leaves and stems of the plant. After harvesting, plants can be burned and the lead residue buried in an approved landfill or recovered.

Interactive Textbook

If your class subscribes to the Interactive Textbook, use it to review key concepts in Section 1.2.

Answers to...

1978
Nature’s Pharmacy

People used ingredients extracted from plants as folk remedies for centuries before chemists were able to isolate the active ingredients from these extracts. The first active ingredient to be isolated was morphine in 1804. Salicylates occur naturally in plants of the genus *Salix*, which includes willow, poplar, and beech trees. Salicin was isolated from willow bark in 1828 by Johann Buchner, a pharmacy professor at the University of Munich.

Discuss

Point out the two names given for each organism, a common name and a scientific name. Pronounce the scientific names for the students.

- *Cinchona succirubra*: chin KOH nuh soo chee ROO bruh
- *Digitalis purpurea*: dih gih TAH lis pur PRR ee uh
- *Salix babylonica*: SAY lix ba bih LOH nih kuh
- *Leucaena leucocephala*: lay OH us le uhr kuh lew kuh kuh
- *Desmodus rotundus*: dez MOH dus roh TUN dus
- *Conus striatus*: KOH nuhs stree AH tuhs
- *Dendrobates tinctorius*: den droh BAY teez reh tik yoo LAH tuhs

Technology & Society

Approval of New Drugs

Point out that it is one thing to produce new effective medicines and quite a different challenge to test them, get them approved, and produce them in quantity. Have the students research the steps involved in getting approval for a new medicine and how much time is usually required.

Application Concepts: Are the chemicals derived from plants and animals organic or inorganic?

Foxglove

Digitalis purpurea

The poison produced by this plant (digitalis) is used in small doses to treat congestive heart failure. It causes heart muscle cells to contract with more power, which increases the ability of the heart to pump blood.

Willow bark

Salix babylonica

For centuries, people made a tea from willow bark to treat headaches and other ailments. By 1828, chemists had isolated the active ingredient in willow bark. For the next 70 years, chemists worked to produce the most effective drug based on this chemical. What they produced is aspirin (acetylsalicylic acid).

Cinchona tree

Cinchona succirubra

Bark from this tree was used for centuries to treat malaria, a disease with recurring bouts of fever and chills. The active ingredient in the bark is quinine — the chemical that gives tonic water its bitter taste.
Discuss

Recently, scientists have turned their attention to animal venom as a source of drugs. The venom can contain numerous fast-acting toxins that target muscles and nerves. Ask, Why do you think that the death stalker scorpion produces venom? (Venom is used to kill or immobilize prey.)

Why do you think that a poison dart frog produces venom? (Venom is also used to protect an animal from predators.)

FYI

Prior to the ban on products containing ephedra, the federal government had not blocked the sale of an OTC dietary supplement.

Facts and Figures

Toxins

The 5-inch long death stalker scorpion produces a toxin that can block the chloride channels in glioma cancer cells. This blockage keeps the cells from shrinking and migrating to other locations in the brain. Vampire bats are found in Central and South America. The medicine derived from their saliva is called Draculin™. The venom of the Malayan pit viper contains a similar anticoagulant.

There are more than 500 species of cone snails. Each produces venom containing 50-200 toxins. Areas of research based on these toxins include treatments for epilepsy, schizophrenia, and stroke. Poison dart frogs tend to be highly colored as a warning to predators. Nearly 600 alkaloid toxins have been isolated from glands in the skin of these frogs. The frogs collect the toxins from ants, mites, millipedes, and other arthropods.

Nature’s Products Can Be Harmful

Chemicals from natural sources are not always effective or harmless. In 2004, the FDA banned weight-loss products based on the herb ephedra. This herb contains the chemical ephedrine, which is associated with increased blood pressure, abnormal heart rates, a higher risk of stroke, and even death.

Technology and Society

Nature’s products can be harmful, as seen with chemicals from natural sources. In 2004, the FDA banned weight-loss products based on the herb ephedra. This herb contains the chemical ephedrine, which is associated with increased blood pressure, abnormal heart rates, a higher risk of stroke, and even death.